CWE - CWE-123: Write-what-where Condition (4.16)
CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-123: Write-what-where Condition (4.16)  
ID

CWE-123: Write-what-where Condition

Weakness ID: 123
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location, often as the result of a buffer overflow.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control

Technical Impact: Modify Memory; Execute Unauthorized Code or Commands; Gain Privileges or Assume Identity; DoS: Crash, Exit, or Restart; Bypass Protection Mechanism

Clearly, write-what-where conditions can be used to write data to areas of memory outside the scope of a policy. Also, they almost invariably can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy. If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), they can redirect a function pointer to their own malicious code. Even when the attacker can only modify a single byte arbitrary code execution can be possible. Sometimes this is because the same problem can be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite security-critical application-specific data -- such as a flag indicating whether the user is an administrator.
Integrity
Availability

Technical Impact: DoS: Crash, Exit, or Restart; Modify Memory

Many memory accesses can lead to program termination, such as when writing to addresses that are invalid for the current process.
Access Control
Other

Technical Impact: Bypass Protection Mechanism; Other

When the consequence is arbitrary code execution, this can often be used to subvert any other security service.
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Language Selection

Use a language that provides appropriate memory abstractions.

Phase: Operation

Use OS-level preventative functionality integrated after the fact. Not a complete solution.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 787 Out-of-bounds Write
PeerOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 415 Double Free
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 134 Use of Externally-Controlled Format String
CanFollow Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 364 Signal Handler Race Condition
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 416 Use After Free
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 479 Signal Handler Use of a Non-reentrant Function
CanFollow Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 590 Free of Memory not on the Heap
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The classic example of a write-what-where condition occurs when the accounting information for memory allocations is overwritten in a particular fashion. Here is an example of potentially vulnerable code:

(bad code)
Example Language:
#define BUFSIZE 256
int main(int argc, char **argv) {
char *buf1 = (char *) malloc(BUFSIZE);
char *buf2 = (char *) malloc(BUFSIZE);
strcpy(buf1, argv[1]);
free(buf2);
}

Vulnerability in this case is dependent on memory layout. The call to strcpy() can be used to write past the end of buf1, and, with a typical layout, can overwrite the accounting information that the system keeps for buf2 when it is allocated. Note that if the allocation header for buf2 can be overwritten, buf2 itself can be overwritten as well.

The allocation header will generally keep a linked list of memory "chunks". Particularly, there may be a "previous" chunk and a "next" chunk. Here, the previous chunk for buf2 will probably be buf1, and the next chunk may be null. When the free() occurs, most memory allocators will rewrite the linked list using data from buf2. Particularly, the "next" chunk for buf1 will be updated and the "previous" chunk for any subsequent chunk will be updated. The attacker can insert a memory address for the "next" chunk and a value to write into that memory address for the "previous" chunk.

This could be used to overwrite a function pointer that gets dereferenced later, replacing it with a memory address that the attacker has legitimate access to, where they have placed malicious code, resulting in arbitrary code execution.


+ Observed Examples
Reference Description
Chain: Python library does not limit the resources used to process images that specify a very large number of bands (CWE-1284), leading to excessive memory consumption (CWE-789) or an integer overflow (CWE-190).
Chain: 3D renderer has an integer overflow (CWE-190) leading to write-what-where condition (CWE-123) using a crafted image.
+ Weakness Ordinalities
Ordinality Description
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 970 SFP Secondary Cluster: Faulty Buffer Access
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1161 SEI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1399 Comprehensive Categorization: Memory Safety
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Write-what-where condition
CERT C Secure Coding ARR30-C Imprecise Do not form or use out-of-bounds pointers or array subscripts
CERT C Secure Coding ARR38-C Imprecise Guarantee that library functions do not form invalid pointers
CERT C Secure Coding STR31-C Imprecise Guarantee that storage for strings has sufficient space for character data and the null terminator
CERT C Secure Coding STR32-C Imprecise Do not pass a non-null-terminated character sequence to a library function that expects a string
Software Fault Patterns SFP8 Faulty Buffer Access
+ References
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. URL validated: 2024-11-17.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2008-11-24 CWE Content Team MITRE
updated Common_Consequences, Other_Notes
2009-01-12 CWE Content Team MITRE
updated Common_Consequences
2009-05-27 CWE Content Team MITRE
updated Relationships
2010-12-13 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Common_Consequences, References, Relationships
2012-10-30 CWE Content Team MITRE
updated Demonstrative_Examples
2013-02-21 CWE Content Team MITRE
updated Potential_Mitigations
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2015-12-07 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Causal_Nature, Common_Consequences, Demonstrative_Examples, Taxonomy_Mappings
2019-01-03 CWE Content Team MITRE
updated Relationships
2019-06-20 CWE Content Team MITRE
updated Relationships
2019-09-19 CWE Content Team MITRE
updated Relationships
2020-02-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2020-08-20 CWE Content Team MITRE
updated Relationships
2020-12-10 CWE Content Team MITRE
updated Relationships
2021-03-15 CWE Content Team MITRE
updated References
2022-10-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
Page Last Updated: November 19, 2024